Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources

Milan Derpich¹ Jan Østergaard²

¹Department of Electronic Engineering Universidad Técnica Federico Santa María Valparaíso, Chile

²Multimedia Information and Signal Processing Department of Electronic Systems Aalborg University Aalborg, Denmark

SETIA-2010 Universidad Técnica Federico Santa María, 22-April-2010

Conventional Non-Causal Rate-Distortion Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Source: $X^n = \{X_1, ..., X_n\}$

Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Source: $X^n = \{X_1, ..., X_n\}$
- Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer
- Coding Rate: Expected number of bits after entropy coding the output of the encoder f_n(Xⁿ)

- Source: $X^n = \{X_1, ..., X_n\}$
- Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer
- Coding Rate: Expected number of bits after entropy coding the output of the encoder f_n(Xⁿ)

• Decoder:
$$g_n(f_n(X^n)) = Y^n$$

- Source: $X^n = \{X_1, ..., X_n\}$
- Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer
- Coding Rate: Expected number of bits after entropy coding the output of the encoder f_n(Xⁿ)

- Decoder: $g_n(f_n(X^n)) = Y^n$
- Reconstruction: $Y^n = \{Y_1, \ldots, Y_n\}$

- Source: $X^n = \{X_1, ..., X_n\}$
- Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer
- Coding Rate: Expected number of bits after entropy coding the output of the encoder f_n(Xⁿ)

- Decoder: $g_n(f_n(X^n)) = Y^n$
- Reconstruction: $Y^n = \{Y_1, \ldots, Y_n\}$
- Expected Distortion: $d(X^n, Y^n)$

- Source: $X^n = \{X_1, ..., X_n\}$
- Encoder: f_n(Xⁿ) e.g., high-dimensional vector quantizer
- Coding Rate: Expected number of bits after entropy coding the output of the encoder f_n(Xⁿ)

- Decoder: $g_n(f_n(X^n)) = Y^n$
- Reconstruction: $Y^n = \{Y_1, \ldots, Y_n\}$
- Expected Distortion: d(Xⁿ, Yⁿ)
- For example: $d(X^n, Y^n) = \mathbb{E}[\frac{1}{n} ||X^n Y^n||^2]$ (MSE)

Rate-Distortion Function

- The Rate-Distortion Function (RDF) R(D) has an operational meaning:
 - 1. Form all encoder-decoder pairs $\{(f_n, g_n)\}$ that achieve $d(X, g_n(f_n(X^n))) \le D$
 - 2. The pair(s) that yields the minimum rate (after entropy coding) define R(D)

Rate-Distortion Function

- The Rate-Distortion Function (RDF) R(D) has an operational meaning:
 - 1. Form all encoder-decoder pairs $\{(f_n, g_n)\}$ that achieve $d(X, g_n(f_n(X^n))) \le D$
 - 2. The pair(s) that yields the minimum rate (after entropy coding) define R(D)
- The information-theoretic RDF R^{it}(D) for the source Xⁿ under d(Xⁿ, Yⁿ) is defined as:

$$R^{it}(D) = \lim_{n \to \infty} \frac{1}{n} \inf I(X^n; Y^n)$$

where the infimum is over all conditional distributions $P(Y^n|X^n)$ such that $d(X^n, Y^n) \le D$

Rate-Distortion Function

- The Rate-Distortion Function (RDF) R(D) has an operational meaning:
 - 1. Form all encoder-decoder pairs $\{(f_n, g_n)\}$ that achieve $d(X, g_n(f_n(X^n))) \le D$
 - 2. The pair(s) that yields the minimum rate (after entropy coding) define R(D)
- The information-theoretic RDF R^{it}(D) for the source Xⁿ under d(Xⁿ, Yⁿ) is defined as:

$$R^{it}(D) = \lim_{n \to \infty} \frac{1}{n} \inf I(X^n; Y^n)$$

where the infimum is over all conditional distributions $P(Y^n|X^n)$ such that $d(X^n, Y^n) \le D$

No minimization over encoders/decoders is necessary!

Information-Theoretic RDF

The RDF for an i.i.d. source Xⁿ for bounded d(Xⁿ, Yⁿ) is equal to the *information-theoretic* RDF [Cover & Thomas]

 $R(D)=R^{it}(D)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Information-Theoretic RDF

The RDF for an i.i.d. source Xⁿ for bounded d(Xⁿ, Yⁿ) is equal to the *information-theoretic* RDF [Cover & Thomas]

$$R(D)=R^{it}(D)$$

 This holds generally for stationary sources and nice distortion measures

Information-Theoretic RDF

The RDF for an i.i.d. source Xⁿ for bounded d(Xⁿ, Yⁿ) is equal to the *information-theoretic* RDF [Cover & Thomas]

$$R(D) = R^{it}(D)$$

- This holds generally for stationary sources and nice distortion measures
- A key aspect that allows one to achieve R^{it}(D) is the freedom to work on infinite-dimensional source vectors and thereby exploit e.g., AEP, instead of having to construct all practical codes

Introduction to Causal Source Coding

Definition of Causal Source Codes

[Neuhoff & Gilbert '82]

• A pair (f_n, g_n) is said to be causal iff

 \mathbf{v}

 $g_n(f_n(x^{\infty})) = g_n(f_n(\tilde{x}^{\infty})), \text{ whenever } x^n = \tilde{x}^n, \forall n \in \mathbb{Z}^+$

 \sqrt{n} \sqrt{n} \sqrt{n}

Equivalently, iff the following Markov chain holds:

$$X^{\circ\circ} \leftrightarrow X^{\circ\circ} \leftrightarrow Y^{\circ}, \quad \forall n \in \mathbb{Z}^{+}$$

$$\xrightarrow{X^{n}} \quad \underbrace{\text{Encoder}}_{f_{n}} \quad \underbrace{\text{Entropy}}_{\text{coder}} \quad \underbrace{\text{Lossless}}_{\text{decoder}} \quad \underbrace{\text{Decoder}}_{g_{n}} \quad \underbrace{Y^{n}}_{f_{n}}$$

Definition of Causal Source Codes

[Neuhoff & Gilbert '82]

• A pair (f_n, g_n) is said to be causal iff

 $g_n(f_n(x^{\infty})) = g_n(f_n(\tilde{x}^{\infty})), \text{ whenever } x^n = \tilde{x}^n, \forall n \in \mathbb{Z}^+$

Equivalently, iff the following Markov chain holds:

Operational Causal Rate Distortion Function

Average operational rate of the causal encoder-decoder:

$$r(X^{\infty}, Y^{\infty}) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \mathbb{E}[L_n(X^{\infty})]$$

where $L_n(X^{\infty})$ is the total number of bits the decoder has received when reconstructing Y^n

Operational Causal Rate Distortion Function

Average operational rate of the causal encoder-decoder:

$$r(X^{\infty}, Y^{\infty}) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \mathbb{E}[L_n(X^{\infty})]$$

where $L_n(X^{\infty})$ is the total number of bits the decoder has received when reconstructing Y^n

Average MSE distortion:

$$d(X^{\infty}, Y^{\infty}) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \mathbb{E}[\|X^n - Y^n\|^2]$$

Operational Causal Rate Distortion Function

Average operational rate of the causal encoder-decoder:

$$r(X^{\infty}, Y^{\infty}) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \mathbb{E}[L_n(X^{\infty})]$$

where $L_n(X^{\infty})$ is the total number of bits the decoder has received when reconstructing Y^n

Average MSE distortion:

$$d(X^{\infty}, Y^{\infty}) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \mathbb{E}[\|X^n - Y^n\|^2]$$

Operational Causal RDF

 $R_c^{op}(D) \triangleq \inf r(X^{\infty}, Y^{\infty}), \text{ such that } d(X^{\infty}, Y^{\infty}) \leq D$

where the infimum is over all causal coders (f_n, g_n) , and where the entropy-coder may be non-causal

Information-Theoretic Causal Rate Distortion Function

Information-theoretic causal RDF

$$R_c^{it}(D) \triangleq \inf \lim_{n \to \infty} \sup \frac{1}{n} I(X^n; Y^n) = \inf \overline{I}(X^\infty; Y^\infty)$$

where the infimum is over all $P(Y^{\infty}|X^{\infty})$ satisfying

- $d(X^{\infty}, Y^{\infty}) \leq D$ (distortion constraint)
- $X^{\infty} \leftrightarrow X^n \leftrightarrow Y^n$, $\forall n \in \mathbb{Z}^+$ (causality constraint)

Information-Theoretic Causal Rate Distortion Function

Information-theoretic causal RDF

$$R_c^{it}(D) \triangleq \inf \lim_{n \to \infty} \sup \frac{1}{n} I(X^n; Y^n) = \inf \overline{I}(X^\infty; Y^\infty)$$

where the infimum is over all $P(Y^{\infty}|X^{\infty})$ satisfying

•
$$d(X^{\infty}, Y^{\infty}) \leq D$$
 (distortion constraint)

- $X^{\infty} \leftrightarrow X^n \leftrightarrow Y^n$, $\forall n \in \mathbb{Z}^+$ (causality constraint)
- Special case of Pinsker's and Gorbunov's non-anticipative epsilon-entropy '87

Information-Theoretic Causal Rate Distortion Function

Information-theoretic causal RDF

$$R_c^{it}(D) \triangleq \inf \lim_{n \to \infty} \sup \frac{1}{n} I(X^n; Y^n) = \inf \overline{I}(X^\infty; Y^\infty)$$

where the infimum is over all $P(Y^{\infty}|X^{\infty})$ satisfying

•
$$d(X^{\infty}, Y^{\infty}) \leq D$$
 (distortion constraint)

- $X^{\infty} \leftrightarrow X^n \leftrightarrow Y^n$, $\forall n \in \mathbb{Z}^+$ (causality constraint)
- Special case of Pinsker's and Gorbunov's non-anticipative epsilon-entropy '87
- Converges to Shannon's QG RDF as R → ∞ [Pinsker & Gorbunov '87,'91]

Existing Results

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

 Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

- Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]
- At high distortions: simultaneously equality in (a) and (b) for i.i.d. Gaussian sources [Marco & Neuhoff '06]

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

- Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]
- At high distortions: simultaneously equality in (a) and (b) for i.i.d. Gaussian sources [Marco & Neuhoff '06]
- For white Gaussian sources, the gap in (a) is at most the space-filling loss of a scalar uniform quantizer: 0.254 bits/dim. [Neuhoff & Gilbert '82]

(日) (日) (日) (日) (日) (日) (日) (日)

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

- Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]
- At high distortions: simultaneously equality in (a) and (b) for i.i.d. Gaussian sources [Marco & Neuhoff '06]
- For white Gaussian sources, the gap in (a) is at most the space-filling loss of a scalar uniform quantizer: 0.254 bits/dim. [Neuhoff & Gilbert '82]
- At high-resolutions and arbitrarily distributed stationary smooth sources, the gap in (a) is *exactly* the space-filling loss: 0.254 bits/dim. [Linder & Zamir '06]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

- Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]
- At high distortions: simultaneously equality in (a) and (b) for i.i.d. Gaussian sources [Marco & Neuhoff '06]
- For white Gaussian sources, the gap in (a) is at most the space-filling loss of a scalar uniform quantizer: 0.254 bits/dim. [Neuhoff & Gilbert '82]
- At high-resolutions and arbitrarily distributed stationary smooth sources, the gap in (a) is *exactly* the space-filling loss: 0.254 bits/dim. [Linder & Zamir '06]
- For general sources, the gap in (b) is at most 0.5 bits/dim. for all R [Zamir, Kochman, Erez '08] [Zamir & Feder '92]

 $R_c^{op}(D) \stackrel{(a)}{\geq} R_c^{it}(D) \stackrel{(b)}{\geq} R(D)$

- Equality in (b) for colored stationary Gaussian sources at high resolutions [Pinsker & Gorbunov '87,'91]
- At high distortions: simultaneously equality in (a) and (b) for i.i.d. Gaussian sources [Marco & Neuhoff '06]
- For white Gaussian sources, the gap in (a) is at most the space-filling loss of a scalar uniform quantizer: 0.254 bits/dim. [Neuhoff & Gilbert '82]
- At high-resolutions and arbitrarily distributed stationary smooth sources, the gap in (a) is *exactly* the space-filling loss: 0.254 bits/dim. [Linder & Zamir '06]
- For general sources, the gap in (b) is at most 0.5 bits/dim. for all R [Zamir, Kochman, Erez '08] [Zamir & Feder '92]
- ► Generally not equality in (a) ⇒ the operational causal RDF is not always equal to the information-theoretic causal RDF

A Recent Closed-Form Result

Sequential RDF for first-order Gauss-Markov source [Tatikonda, Sahai, Mitter, '00, '04]:

per-sample MSE instead of an average MSE

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Recent Closed-Form Result

Sequential RDF for first-order Gauss-Markov source [Tatikonda, Sahai, Mitter, '00, '04]:

- per-sample MSE instead of an average MSE
- First-order AR sources (Gauss-Markov):

$$X_{n+1} = aX_n + \xi_n$$

where $\{\xi_n\}$ i.i.d. zero-mean Gaussian with variance σ_{ξ}^2

A Recent Closed-Form Result

Sequential RDF for first-order Gauss-Markov source [Tatikonda, Sahai, Mitter, '00, '04]:

- per-sample MSE instead of an average MSE
- First-order AR sources (Gauss-Markov):

$$X_{n+1} = aX_n + \xi_n$$

where $\{\xi_n\}$ i.i.d. zero-mean Gaussian with variance σ_{ξ}^2 In this case

$$R_{SRDF}^{it}(D) = \max\left\{0, \frac{1}{2}\log_2\left(a^2 + \frac{\sigma_{\xi}^2}{D}\right)\right\}$$
 bits/sample

Bounding The Rate Loss Due To Causality

Theorem 1

For a 1st-order Gauss-Markov source

$$X_{n+1} = aX_n + \xi_n,$$

under an average MSE distortion constraint, we have

$$\begin{aligned} \mathcal{R}_{c}^{it}(D) &= \mathcal{R}_{SRDF}^{it}(D) \\ &= \max\left\{0, \frac{1}{2}\log_{2}\left(a^{2} + \frac{\sigma_{\xi}^{2}}{D}\right)\right\} \text{ bits/sample} \end{aligned}$$

for any D > 0 and |a| < 1. $R_c^{it}(D)$ is realized by a Gaussian error process $\{Z_n\}$, which is *jointly* stationary with $\{X_n\}$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 → りへで

We provide five upper bounds tighter than those previously known.

We provide five upper bounds tighter than those previously known.

Four of these upper bounds are given in closed form.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We provide five upper bounds tighter than those previously known.

Four of these upper bounds are given in closed form.

The fifth (and tightest) bound must be found by iteration.

Another Causal Information Theoretic RDF $\bar{R}_{c}^{it}(D)$

Definition

$$\bar{R}_{c}^{it}(D) \triangleq \inf \bar{I}(X^{\infty}; Y^{\infty})$$

where the infimum is over all processes Y^{∞} such that:

- i) $d(X^{\infty}, Y^{\infty}) \leq D$,
- ii) $X^{\infty} \leftrightarrow X^n \leftrightarrow Y^n, \ \forall n \in \mathbb{Z}^+$ (causality)
- iii) the reconstruction error $Z^{\infty} \triangleq Y^{\infty} X^{\infty}$ is jointly stationary with the source

Clearly:

• $R_c^{it}(D) \leq \bar{R}_c^{it}(D)$

► For first-order Gauss-Markov sources: $R_c^{it}(D) = \bar{R}_c^{it}(D)$

Conjecture: For *m*th-order Gauss-Markov sources, $R_c^{it}(D) = \bar{R}_c^{it}(D)$ (this is an open problem!)

Theorem 2 For the *m*th-order Gauss-Markov source and positive *D*,

$$ar{R}^{it}_c(D) - R(D) \leq oldsymbol{B_1}(D) riangleq rac{1}{2} \log_2\left(\left[\sum_{i=1}^m |a_i|
ight]^2 + rac{\sigma_{\xi}^2}{D}
ight) - R(D),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with equality for m = 1.

Theorem 3 (bounds $B_2 - B_4$)

Let $\{X_n\}$ be a stationary zero-mean Gaussian source with PSD $S_X(e^{j\omega})$, variance σ_X^2 and such that

$$\eta_X^2 \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} S_X(e^{j\omega})^{-1} d\omega$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

exists (is finite and positive). Then...

Theorem 3 (bounds $B_2 - B_4$)

...

$$R_c^{it}(D) - R(D) \leq \overline{R}_c^{it}(D) - R(D) \leq B_2(D) \leq B_3(D) < B_4(D)$$

where all rates are in [bits/sample], and where

$$\begin{split} B_2(D) &\triangleq R^{\perp} \left(\frac{\sigma_X^2 D}{\sigma_X^2 - D} \right) - R(D) \\ B_3(D) &\triangleq \frac{1}{4\pi} \int_{-\pi}^{\pi} \log_2 \left(1 + \left[1 - \frac{D}{\sigma_X^2} \right] \frac{S_X(e^{j\omega})}{D} \right) d\omega - R(D) \\ B_4(D) &\triangleq \begin{cases} \frac{1}{2} \log_2(1 + D\eta_X^2), & \text{if } D \le \frac{1}{\eta_X^2} \\ 0.5, & \text{if } \frac{1}{\eta_X^2} < D < \frac{\sigma_X^2}{2} \\ \frac{1}{2} \log_2(\frac{\sigma_X^2}{D}), & \text{if } \frac{\sigma_X^2}{2} \le D \le \sigma_X^2 \end{cases} \end{split}$$

Obtaining the Information-Theoretic Causal RDF

Achieving the Quadratic Gaussian RDF by Prediction

- Shannon's RDF can be realized by an AWGN channel surrounded by LTI pre-, post- and feedback-filters [Zamir, Kochman, Erez '08]
- ► The pre- and post-filters are matched: H(z) = G^{*}(z), so at least one of them must be non-causal!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Equivalent test-channel representation

Achieving the Quadratic Gaussian Causal RDF by Prediction

- The optimal filters are known in closed-form (obtained from the forward additive noise channel realization of the RDF) [Zamir, Kochman, Erez '08]
- Assume we make the pre-filter causal can we then simply replace the post-filter by its causal version and be optimal for the causal regime?
- No generally not!
- Moreover, the causal Wiener filter is generally not known in closed-form nor is its performance
- What about joint optimization of all the causal filters?
- It is hard to show that the optimization problem is convex in the filter responses of all filters.
- Computationally demanding to optimize over filters having a large number of taps

- They key idea is to constraint the pre- and post-filters to be inverses of each other: H(z)G(z) ≡ 1
- And then add an additional post-filter (MMSE causal Wiener filter)

・ロット (雪) (日) (日) (日)

Theorem 3

 If the filters that minimize the MSE yield distortion D, subject to an SNR constraint γ ≤ Γ in the inner AWGN channel (Optimization Problem 1), then:

$$ar{R}^{it}_c(D) = rac{1}{2}\log_2(\Gamma), \quad \forall D \geq 0$$

Theorem 3

If the filters that minimize the MSE yield distortion D, subject to an SNR constraint γ ≤ Γ in the inner AWGN channel (Optimization Problem 1), then:

$$ar{R}^{it}_c(D) = rac{1}{2}\log_2(\Gamma), \quad \forall D \geq 0$$

Theorem 4

 Optimization Problem 1 is jointly convex in the frequency responses of the filters.

Theorem 3

If the filters that minimize the MSE yield distortion D, subject to an SNR constraint γ ≤ Γ in the inner AWGN channel (Optimization Problem 1), then:

$$ar{R}^{it}_c(D) = rac{1}{2}\log_2(\Gamma), \quad \forall D \geq 0$$

Theorem 4

 Optimization Problem 1 is jointly convex in the frequency responses of the filters.

We propose an iterative algorithm which, thanks to these theorems, is guaranteed to converge to $\bar{R}_c^{it}(D)$.

Example 1: First-Order Gauss-Markov Process

•
$$X_n = 0.9X_{n-1} + \xi_n$$

うくで

Example 2: Second-Order Gauss-Markov Process:

•
$$X_n = X_{n-1} - 0.09X_{n-2} + \xi_n$$

1 9 9 9 P

Observations

- For source 1 (AR-1), $B_1(D)$ is everywhere tight
- For source 2 (AR-2), $B_1(D)$ is generally loose
- For both sources, the maximum gap is:

 $ar{R}^{it}_c(D) - R(D) < 0.22$ bits/dim.

- $B_2(D), B_3(D), B_4(D)$ tend to $\overline{R}_c^{it}(D)$ at low and high rates
- After five iterations for Source 1, the resulting filter taps are:

$$W(z) = 0.3027 + 0.1899z^{-1} + 0.1192z^{-2} + 0.0748z^{-3} + 0.0470z^{-4} + 0.0296z^{-5} + \dots + 0.0070z^{-9}$$

Thus, really no need for higher filter orders for this source.

With a target rate of R = 0.2601 bits/sample, the resulting distortions after each iteration were:

```
1.6565, 1.6026, 1.6023, 1.6023,
```

which suggests that (in this case) the procedure converges (to within a sensible accuracy) after just 3 iterations

Upper Bounds to Operational Causal RDF

If we replace the AWGN channel by a subtractively dithered entropy-coded uniform (scalar) quantizer we can upper bound the operational causal RDF by:

 $R_c^{op}(D) \leq \bar{R}_c^{it}(D) + 0.254$ bits/sample

- where the 0.254 is the space-filling loss of a scalar quantizer
- If we do not allow entropy coding with memory: (Zero-delay — Causal entropy coding) we get

 $R_{ZD}^{op}(D) \leq \bar{R}_c^{it}(D) + 0.254 + 1$ bits/sample

Conclusions

- Obtaining the information-theoretic causal RDF (for jointly stationary distortion) is equivalent to optimizing an LTI feedback system for SNR
- This forms a convex optimization problem and we provided a simple iterative algorithm with guaranteed convergence. Thus, no need to compute complicated expressions involving mutual information rates.
- We provided several upper bounds on the difference R^{it}_c(D) - R(D); three of them are always strictly smaller than 0.5 bits/sample for any stationary Gaussian source
- The looser the bound, the easier it is to compute
- Operational upper bound: $R_c^{op}(D) \leq \bar{R}_c^{it}(D) + 0.254$
- ▶ Operational upper bound: $R_{ZD}^{op}(D) \leq \bar{R}_{c}^{it}(D) + 0.254 + 1$