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Conventional Non-Causal Rate-Distortion
Theory
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◮ Coding Rate: Expected number of bits after entropy coding

the output of the encoder fn(X n)

◮ Decoder: gn(fn(X n)) = Y n

◮ Reconstruction: Y n = {Y1, . . . ,Yn}

◮ Expected Distortion: d(X n,Y n)

◮ For example: d(X n,Y n) = E[1
n‖X n − Y n‖2] (MSE)
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◮ The Rate-Distortion Function (RDF) R(D) has an
operational meaning:

1. Form all encoder-decoder pairs {(fn, gn)} that achieve
d(X , gn(fn(Xn))) ≤ D

2. The pair(s) that yields the minimum rate (after entropy
coding) define R(D)

◮ The information-theoretic RDF R it(D) for the source X n

under d(X n,Y n) is defined as:

R it(D) = lim
n→∞

1
n

inf I(X n;Y n)

where the infimum is over all conditional distributions
P(Y n|X n) such that d(X n,Y n) ≤ D

◮ No minimization over encoders/decoders is necessary!
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Information-Theoretic RDF

◮ The RDF for an i.i.d. source X n for bounded d(X n,Y n) is
equal to the information-theoretic RDF [Cover & Thomas]

R(D) = R it(D)

◮ This holds generally for stationary sources and nice
distortion measures

◮ A key aspect that allows one to achieve R it(D) is the
freedom to work on infinite-dimensional source vectors and
thereby exploit e.g., AEP, instead of having to construct all
practical codes
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received when reconstructing Y n

◮ Average MSE distortion:

d(X∞,Y∞) , lim
n→∞

sup
1
n
E[‖X n − Y n‖2]

◮ Operational Causal RDF

Rop
c (D) , inf r(X∞,Y∞), such that d(X∞,Y∞) ≤ D

where the infimum is over all causal coders (fn,gn), and
where the entropy-coder may be non-causal
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◮ Information-theoretic causal RDF

R it
c (D) , inf lim

n→∞
sup

1
n

I(X n;Y n) = inf Ī(X∞;Y∞)

where the infimum is over all P(Y∞|X∞) satisfying
◮ d(X∞,Y∞) ≤ D (distortion constraint)
◮ X∞ ↔ Xn ↔ Y n, ∀n ∈ Z

+ (causality constraint)

◮ Special case of Pinsker’s and Gorbunov’s non-anticipative
epsilon-entropy ’87

◮ Converges to Shannon’s QG RDF as R → ∞ [Pinsker &
Gorbunov ’87,’91]
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◮ Equality in (b) for colored stationary Gaussian sources at
high resolutions [Pinsker & Gorbunov ’87,’91]

◮ At high distortions: simultaneously equality in (a) and (b)
for i.i.d. Gaussian sources [Marco & Neuhoff ’06]

◮ For white Gaussian sources, the gap in (a) is at most the
space-filling loss of a scalar uniform quantizer: 0.254
bits/dim. [Neuhoff & Gilbert ’82]

◮ At high-resolutions and arbitrarily distributed stationary
smooth sources, the gap in (a) is exactly the space-filling
loss: 0.254 bits/dim. [Linder & Zamir ’06]

◮ For general sources, the gap in (b) is at most 0.5 bits/dim.
for all R [Zamir, Kochman, Erez ’08] [Zamir & Feder ’92]

◮ Generally not equality in (a) ⇒ the operational causal RDF
is not always equal to the information-theoretic causal RDF
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A Recent Closed-Form Result

Sequential RDF for first-order Gauss-Markov source
[Tatikonda, Sahai, Mitter, ’00, ’04]:

◮ per-sample MSE instead of an average MSE
◮ First-order AR sources (Gauss-Markov):

Xn+1 = aXn + ξn

where {ξn} i.i.d. zero-mean Gaussian with variance σ2
ξ

◮ In this case

R it
SRDF (D) = max

{

0,
1
2

log2

(

a2 +
σ2
ξ

D

)

}

bits/sample



Bounding The Rate Loss Due To Causality



Theorem 1

For a 1st-order Gauss-Markov source

Xn+1 = aXn + ξn,

under an average MSE distortion constraint, we have

R it
c (D) = R it

SRDF (D)

= max

{

0,
1
2

log2

(

a2 +
σ2
ξ

D

)

}

bits/sample

for any D > 0 and |a| < 1. R it
c (D) is realized by a Gaussian

error process {Zn}, which is jointly stationary with {Xn}.
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What About General Stationary Sources?

We provide five upper bounds tighter than those previously
known.

Four of these upper bounds are given in closed form.

The fifth (and tightest) bound must be found by iteration.



Another Causal Information Theoretic RDF R̄ it
c (D)

Definition
R̄ it

c (D) , inf Ī(X∞;Y∞)

where the infimum is over all processes Y∞ such that:

i) d(X∞,Y∞) ≤ D,

ii) X∞ ↔ X n ↔ Y n, ∀n ∈ Z
+ (causality)

iii) the reconstruction error Z∞ , Y∞ − X∞ is jointly
stationary with the source

Clearly:
◮ R it

c (D) ≤ R̄ it
c (D)

◮ For first-order Gauss-Markov sources: R it
c (D) = R̄ it

c (D)

Conjecture: For mth-order Gauss-Markov sources,
R it

c (D) = R̄ it
c (D) (this is an open problem!)



The Bound B1(D)

Theorem 2 For the mth-order Gauss-Markov source and
positive D,

R̄ it
c (D)− R(D) ≤ B1(D) ,

1
2

log2

(

[ m
∑

i=1

|ai |

]2

+
σ2
ξ

D

)

− R(D),

with equality for m = 1.



Theorem 3 (bounds B2–B4)

Let {Xn} be a stationary zero-mean Gaussian source with PSD
SX (ejω), variance σ2

X and such that

η2
X ,

1
2π

∫ π

−π

SX (e
jω)−1dω

exists (is finite and positive). Then...



Theorem 3 (bounds B2–B4)

...

R it
c (D)− R(D) ≤ R̄ it

c (D)− R(D) ≤ B2(D) ≤ B3(D) < B4(D)

where all rates are in [bits/sample], and where

B2(D) , R⊥

(

σ2
X D

σ2
X − D

)

− R(D)

B3(D) ,
1

4π

∫ π

−π

log2

(

1 +

[

1 −
D
σ2

X

]

SX (ejω)

D

)

dω − R(D)

B4(D) ,



















1
2 log2(1 + Dη2

X ), if D ≤ 1
η2

X

0.5, if 1
η2

X
< D <

σ2
X
2

1
2 log2(

σ2
X

D ), if
σ2

X
2 ≤ D ≤ σ2

X



Obtaining the Information-Theoretic Causal RDF



Achieving the Quadratic Gaussian RDF by Prediction

◮ Shannon’s RDF can be realized by an AWGN channel
surrounded by LTI pre-, post- and feedback-filters
[Zamir, Kochman, Erez ’08]

◮ The pre- and post-filters are matched: H(z) = G∗(z), so at
least one of them must be non-causal!

AWGN

− +
+++

Pre−filter Post−filter

Predictor

Xn Yn

Zn

H(z) G(z)

F (z)

Equivalent test-channel representation



Achieving the Quadratic Gaussian Causal RDF by
Prediction

◮ The optimal filters are known in closed-form (obtained from
the forward additive noise channel realization of the RDF)
[Zamir, Kochman, Erez ’08]

◮ Assume we make the pre-filter causal – can we then
simply replace the post-filter by its causal version and be
optimal for the causal regime?

◮ No — generally not!
◮ Moreover, the causal Wiener filter is generally not known in

closed-form nor is its performance
◮ What about joint optimization of all the causal filters?
◮ It is hard to show that the optimization problem is convex in

the filter responses of all filters.
◮ Computationally demanding to optimize over filters having

a large number of taps



Achieving the Quadratic Gaussian Causal RDF

◮ They key idea is to constraint the pre- and post-filters to be
inverses of each other: H(z)G(z) ≡ 1

◮ And then add an additional post-filter (MMSE causal
Wiener filter)

−
++

Pre−filter

AWGN

+

+

−

Noise Shaping

Post−filter C−WienerXn Yn

Zn

H(z) G(z)

F (z)

W (z)



Achieving the Quadratic Gaussian Causal RDF

Theorem 3
◮ If the filters that minimize the MSE yield distortion D,

subject to an SNR constraint γ ≤ Γ in the inner AWGN
channel (Optimization Problem 1), then:

R̄ it
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Achieving the Quadratic Gaussian Causal RDF

Theorem 3
◮ If the filters that minimize the MSE yield distortion D,

subject to an SNR constraint γ ≤ Γ in the inner AWGN
channel (Optimization Problem 1), then:

R̄ it
c (D) =

1
2

log2(Γ), ∀D ≥ 0

Theorem 4
◮ Optimization Problem 1 is jointly convex in the frequency

responses of the filters.

We propose an iterative algorithm which, thanks to these
theorems, is guaranteed to converge to R̄ it

c (D).



Example 1: First-Order Gauss-Markov Process
◮ Xn = 0.9Xn−1 + ξn
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Example 2: Second-Order Gauss-Markov Process:
◮ Xn = Xn−1 − 0.09Xn−2 + ξn
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R(D) + B4(D)



Observations
◮ For source 1 (AR-1), B1(D) is everywhere tight
◮ For source 2 (AR-2), B1(D) is generally loose
◮ For both sources, the maximum gap is:

R̄ it
c (D)− R(D) < 0.22 bits/dim.

◮ B2(D),B3(D),B4(D) tend to R̄ it
c (D) at low and high rates

◮ After five iterations for Source 1, the resulting filter taps are:

W (z) = 0.3027 + 0.1899z−1 + 0.1192z−2 + 0.0748z−3

+ 0.0470z−4 + 0.0296z−5 + · · ·+ 0.0070z−9

Thus, really no need for higher filter orders for this source.
◮ With a target rate of R = 0.2601 bits/sample, the resulting

distortions after each iteration were:

1.6565,1.6026,1.6023,1.6023,

which suggests that (in this case) the procedure converges
(to within a sensible accuracy) after just 3 iterations



Upper Bounds to Operational Causal RDF

◮ If we replace the AWGN channel by a subtractively
dithered entropy-coded uniform (scalar) quantizer we can
upper bound the operational causal RDF by:

Rop
c (D) ≤ R̄ it

c (D) + 0.254 bits/sample

◮ where the 0.254 is the space-filling loss of a scalar
quantizer

◮ If we do not allow entropy coding with memory:
(Zero-delay — Causal entropy coding) we get

Rop
ZD(D) ≤ R̄ it

c (D) + 0.254 + 1 bits/sample



Conclusions

◮ Obtaining the information-theoretic causal RDF (for jointly
stationary distortion) is equivalent to optimizing an LTI
feedback system for SNR

◮ This forms a convex optimization problem and we provided
a simple iterative algorithm with guaranteed convergence.
Thus, no need to compute complicated expressions
involving mutual information rates.

◮ We provided several upper bounds on the difference
R it

c (D)− R(D); three of them are always strictly smaller
than 0.5 bits/sample for any stationary Gaussian source

◮ The looser the bound, the easier it is to compute
◮ Operational upper bound: Rop

c (D) ≤ R̄ it
c (D) + 0.254

◮ Operational upper bound: Rop
ZD(D) ≤ R̄ it

c (D) + 0.254 + 1
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